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Abstract

Herpesviruses are successful pathogens that infect most vertebrates as well as at least one invertebrate species. Six
of the eight human herpesviruses are widely distributed in the population. Herpesviral infections persist for the life
of the infected host due in large part to the ability of these viruses to enter a non-productive, latent state in which
viral gene expression is limited and immune detection and clearance is avoided. Periodically, the virus will
reactivate and enter the lytic cycle, producing progeny virus that can spread within or to new hosts. Latency has
been classically divided into establishment, maintenance, and reactivation phases. Here we focus on demonstrated
and postulated molecular mechanisms leading to the establishment of latency for representative members of each
human herpesvirus family. Maintenance and reactivation are also briefly discussed. In particular, the roles that
tegument proteins may play during latency are highlighted. Finally, we introduce the term animation to describe
the initiation of lytic phase gene expression from a latent herpesvirus genome, and discuss why this step should
be separated, both molecularly and theoretically, from reactivation.

Review
Herpesvirus Lytic and Latent Infections
Herpesviruses are large double-stranded DNA viruses
with a unique virion morphology consisting of a gen-
ome-containing capsid, a proteinaceous tegument, and a
lipid envelope. Human herpesviruses are divided into
three families (alpha, beta, and gamma) based on tissue
tropism and sequence similarity [1]. The amplification
of virus within an infected cell or host is accomplished
by productive, lytic infection where, upon entry into a
susceptible cell (Table 1), a specific cascade of viral gene
expression is activated, the genome is replicated to high
levels, and infectious progeny virions are assembled and
released. The lytic cascade of herpesvirus gene expres-
sion initiates with the synthesis of the immediate early
(IE) genes. Early and late gene expression follows [1].
Provocatively, unlike other large DNA viruses, many
herpesvirus IE genes are not controlled by promoters
that are efficient and constitutively active within the
context of the viral genome. Rather, viral transactivator
proteins incorporated into the virion tegument and
released into the cell upon infection play critical roles in

the activation of viral IE gene expression [2-5]. Such a
mechanism permits a far greater level of regulation than
a simple constitutive promoter would allow.
The productive, lytic cycle is not the only possible

outcome upon viral infection of an individual cell. In
certain cell types (Table 1), herpesvirus infections estab-
lish the viral genomes in the nucleus but a productive
round of replication is not completed in a timely man-
ner. In such cells, a different, significantly smaller subset
of viral genes is expressed. Importantly, because these
infected cells maintain the potential to undergo produc-
tive replication at some later time after receiving the
appropriate stimulus, this type of infection is described
as latency. The resumption and completion of produc-
tive, lytic replication after a period of latency is called a
reactivation event [1]. Both the restriction of substantial
viral gene expression and the maintenance over time of
the viral genome during latency allow herpesviral infec-
tions to persist for the life of the host even in the face
of intense immune surveillance. Reactivation events
allow for dissemination throughout and among hosts.
While drugs that suppress lytic replication are available
[6,7], treatments for latently infected cells currently do
not exist. As controlling or curing a herpesvirus infec-
tion would require modulation or elimination of the
reservoir of latently infected cells, understanding the
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molecular mechanisms that govern latency is of utmost
importance.

Latency is Cell Type Specific
Cell types that support latent infection with different
herpesviruses are highly exclusive and non-overlapping.
The alphaherpesviruses, Herpes Simplex Virus type 1
and 2 (HSV-1 and -2) and Varicella Zoster Virus (VZV)
establish latency in neurons [8,9]. The betaherpesviruses
Human Cytomegalovirus (HCMV), and Human Herpes-
virus -6 and -7 (HHV-6 and -7) establish latency in dif-
ferent subsets of hematopoietic cells; HCMV in
hematopoietic stem cells [10-12], HHV-6 in bone mar-
row progenitor cells [13,14] and HHV-7 in T-cells
[14,15]. The gammaherpesviruses Epstein Barr Virus
(EBV) and Kaposi’s Sarcoma Associated Herpesvirus
(KSHV) establish latency in B cells [16-18]. Interestingly,
most of these viruses have a broader tropism for lytic
replication than latent infections, with many herpes-
viruses being limited to a single cell type in which
latency can be established. The specificity for latent
infections seems to indicate that each individual cell
type contributes important factors that promote latency.
This review presents our interpretations of the molecu-
lar mechanisms that control herpesvirus latency. For
independent views, readers are directed to several recent
literature surveys focusing on HSV-1 [19-23], HCMV
[24-28], or EBV [29-33].
The systems used to study alpha-, beta-, and gamma-

herpesvirus latency vary dramatically. A valuable animal
model for HSV-1 latency exists, but in vitro models
[34-38] receive less attention. Thus the genetics of HSV-
1 latency is established (i.e. which open reading frames
are required for latency), but the molecular/cellular biol-
ogy (i.e. how the products of the open reading frames
actually promote latency) is less well understood. An
in vitro model for HCMV latency is in its infancy.
Despite its technical difficulties, it is amenable to both
genetic and molecular analysis. Many cell lines exist to
study the maintenance and reactivation of EBV latency,

but the difficulty in making high titer virus stocks
makes studying the establishment phase challenging.
Animal models for HCMV and EBV latency do not
exist, although certain aspects can be studied in immu-
nodeficient humanized mice [39,40]. The general lack of
animal models for these viruses makes it difficult to
determine the true physiologic relevance of in vitro
studies.
One clear component of latency for each virus is the

silencing of lytic phase gene expression. Interestingly, in
the absence of tegument transactivators, most if not all
viral IE promoters are poorly activated even in cell types
where lytic infection occurs and that presumably have
all the required cellular activating transcriptional factors
for high-level lytic gene expression [2,41]. Thus, the
roles of tegument proteins and cellular transcriptional
repressors in herpesvirus latency have recently received
increased scrutiny. In the sections below, we review the
current knowledge of how viral IE gene expression from
incoming viral genomes is initially repressed in latently
infected cells, and briefly address the maintenance of
that repression. Finally, we examine the initial events
that may resuscitate latent viral genomes (an event we
term animation), and how they relate to full reactivation
and infectious progeny virion production.

Establishing Latent HSV-1 Infections
Establishment of herpesviral latency can be operationally
defined as the delivery of the viral genome to the
nucleus without the initiation of a productive infection.
HSV-1 establishes latency upon infection of a subset of
neurons found in trigeminal ganglia, but productively
replicates in other types of neurons found in these
structures [42-48]. Productive replication within the tri-
geminal ganglia increases the number of latently
infected neurons, but is not absolutely required for the
establishment of latency [49-53]. Debate remains as to
whether or not neurons destined to establish a latent
infection may initially express lytic phase genes and
then subsequently extinguish them. Inferred activity of

Table 1 Cells that support the different types of human herpesvirus infections

Family Virus Productive (Lytic) Replication Site of Latency

a HSV-1 Epithelial and keratinocyte Neuron

HSV-2 Epithelial and keratinocyte Neuron

VZV Epithelial, keratinocyte, T cell, sebocyte, monocyte, endothelial, Langerhans and PBMC Neuron

b HCMV Macrophage, dendritic, endothelial, smooth muscle, epithelial and fibroblast CD34+ HSC, monocyte

HHV-6 T cell BMP

HHV-7 T cell T cell

g EBV B cell and epithelial B cell

KSHV Lymphocyte B cell

Common cell types in which the human herpesviruses, grouped by family, initiate productive lytic infection or establish latency are listed. PBMC, peripheral blood
mononuclear cells. HSC, hematopoietic stem cell. BMP, bone marrow progenitor.
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an ectopic ICP0 promoter driving expression of the Cre
recombinase and the subsequent Cre-mediated activa-
tion of a LacZ reporter from the cellular genome has
been used to argue that no more than one-third of
latently-infected neurons may have experienced ICP0
expression sometime during the infection [44]. However,
the correct Cre-mediated recombination events were not
confirmed in those experiments, and the proper IE regu-
lation of the ectopic ICP0 promoter was not examined.
Nevertheless, the ectopic ICP0 promoter apparently was
never activated in the majority of latently infected neu-
rons [44], indicated that in most (if not all) cells, the
very first class of lytic genes, the IE genes, are not
expressed upon neuronal infection where latency is
established. To appreciate how HSV-1 IE genes may be
silenced during the establishment of latency, we must
understand how they are activated upon lytic infection.
HSV-1 IE gene expression is activated by a complex

consisting of the viral tegument protein VP16, which is
delivered to the cell upon entry, and two cellular pro-
teins, host cell factor 1 (HCF) [54-56] and the POU
homeodomain protein Oct-1 [57-59]. Tegument-deliv-
ered VP16 encounters HCF in the cytoplasm, and this
association is absolutely required for VP16 translocation
to the nucleus. Tegument-delivered VP16 remains in
the cytoplasm of infected cells if binding to HCF is dis-
rupted by mutation, or if the nuclear localization
sequence (NLS) of HCF is deleted [60]. Under these cir-
cumstances, viral IE gene expression is inhibited. Once
in the nucleus, the VP16/HCF pair interacts with Oct-1
associated with TAATGARAT motifs (where R is a pur-
ine) found in HSV-1 IE promoters [61]. Now tethered
to viral genomes, the VP16/HCF/Oct-1 complex acti-
vates viral gene expression by recruiting cellular RNA
Polymerase II and by modulating both histone occu-
pancy and chromatin structure of the viral genome [62].
VP16 contains a prototypical acidic activation domain

[63] that interacts with RNA Polymerase II, as well as
several cellular components of the basal transcriptional
machinery, including transcription factor IIB (TFIIB)
and IIH (TFIIH), TATA-binding protein (TBP) and
other transcription associated factors (TAFs) [56,64-68].
Complex association with the TAATGARAT sequences
orients the preinitiation complex facilitating transcrip-
tional initiation. A specific VP16 mutant allele that lacks
the acidic activation domain termed RP5 is unable to
recruit the basal transcriptional machinery to viral IE
promoters [62]. The RP5 virus exhibits a severe growth
defect at low multiplicities of infection and is unable to
replicate in immunocompetent mice [69].
In addition to recruiting RNA Polymerase II, the

VP16/HCF/Oct-1 complex also controls histone occu-
pancy, positioning, and modification at viral IE promo-
ters [62,70,71]. Viral genomes packaged into virions and

delivered to the nuclei of infected cells are devoid of cel-
lular histone proteins [72,73]. However, chromatiniza-
tion occurs rapidly upon nuclear entry and is
maintained throughout infection, although histone asso-
ciation with the viral genome is less prevalent and irre-
gularly spaced compared to the cellular genome
[21,22,62,72,74-77]. Histones wrap DNA into nucleo-
somes. The positioning of nucleosomes, as well as the
modification of the resident histones, has profound
effects on both transcriptional activation and repression.
The dynamics and importance of histone association

with herpesviral genomes are just beginning to be
appreciated. However, early work has made it clear that
the VP16/HCF/Oct-1 complex modulates cellular
histone association with viral IE promoters. The acidic
activation domain of VP16 interacts with cellular ATP-
dependent chromatin remodeling complexes that
include the proteins BRG1 and hBRM, which are the
mammalian counterparts of the yeast SWI/SNF complex
components [78,79]. This results in decreased histone
occupancy at viral IE promoters. The RP5 mutant virus
is unable to recruit these chromatin remodeling com-
plexes and displays increased histone association with
viral IE promoters [62]. HCF interaction with the his-
tone chaperone Asf1b may also play a role in regulating
viral genome chromatinization [71].
In addition to controlling the occupancy and position-

ing of cellular histones on viral genomes, the VP16/
HCF/Oct-1 complex also regulates their post-transla-
tional modifications. VP16 interacts with the cellular
histone acetyltransferases (HATs) CBP and p300, and
increases the acetylation of histones associated with viral
IE promoters [78,80-83]. Specifically, markers of active
euchromatin such as H3K9/K14 acetylation and H3K4
methylation are induced during lytic infection
[62,72,76,77]. Interestingly, neither p300 nor CBP activ-
ity appear to be required for HSV-1 IE gene expression
[84], indicating that either other cellular HATs can
compensate, or that histone occupancy is quantitatively
more important for controlling viral IE gene expression
than is histone modification. In summary, it is becoming
increasingly clear that part of the mechanism through
which VP16 activates HSV-1 IE gene expression is
through reducing the overall level, ensuring the proper
positioning, and facilitating the activation-linked modifi-
cation of histones that become associated with viral pro-
moters upon entry of the genome into the nucleus.
Indeed, chromatinization of the viral genome can be a
significant barrier to HSV-1 IE gene expression and the
initiation of lytic infection that is overcome by the var-
ious functions of VP16.
As mentioned above, viral IE genes are likely

not expressed at the start of an HSV-1 latent infection.
Presumably, this must occur through either a loss of
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VP16-mediated enhancement, a dominant block to IE
gene expression even in the presence of VP16 function,
or a combination of both mechanisms. Analyzing the
molecular details of the establishment of HSV-1 latency
has been monumentally difficult because of the heavy
reliance on animal model systems. Mouse and rabbit
model systems provide quantitative readouts for various
latency parameters, and are invaluable in the analysis of
viral genetics in a holistic view of HSV-1 latency. How-
ever, in these systems it is either difficult or impossible
to perform a detailed molecular analysis, or to divorce
lytic replication from latency competence. Animal mod-
els require initial lytic infection at epithelial sites (for
example, the eye) to seed ganglia with infectious virus
that becomes amplified through more lytic replication
prior to or concomitant with establishing latency in a
subset of sensory neurons. Reactivations scored in ani-
mals after various stresses require viruses competent for
productive, lytic infection. Alternatively, reactivation can
be monitored in explanted neurons. Unfortunately, the
explantation process significantly alters neurons, compli-
cating the interpretation of results.
The literature pertaining to HSV-1 latency is enor-

mous and often contradictory, and a full-scale review of
it is not our intent here. Below we attempt to address
and review a specific aspect of HSV-1 latency, the initial
silencing of viral IE gene expression during the estab-
lishment of latency. Evolution has provided HSV-1 a
mechanism to regulate viral IE gene expression by the
use of promoters that are not constitutively active in
their native locales, but require a trans-acting, tegu-
ment-delivered viral transcription factor (VP16) for their
activation. Here we revisit a simple question that,
although previously pondered [4,60,85,86] deserves, in
our opinion, increased scrutiny: is this potential regula-
tion point used to modulate establishment of latency?
To answer this, one must determine if VP16 is or has

the potential to be active in sensory neurons at a time
when HSV-1 establishes latency. For tegument-delivered
VP16 to activate viral gene expression it must pair with
HCF [60,87] in the cytoplasm and then translocate to the
nucleus. HCF is expressed in neurons. However, unlike
other cell types where the protein is mainly nuclear, in
neurons, HCF is cytoplasmic [86], perhaps sequestered
there through its association with proteins called Zhangfei
[88,89] and Luman [90,91], and is often found in associa-
tion with the Golgi apparatus [92]. This would seem to
indicate that nuclear import of VP16 is most likely
impaired in neurons. Cytoplasmic sequestration of VP16
may have a direct (and positive) effect on HSV-1 latency
as the IE promoters of latent genomes are highly chroma-
tinized, and the associated histones have heterochromatin-
like marks, including the absence of acetylation and the
presence of repressive modifications, such as H3K9 tri-

methylation [93-95]. Such a configuration would favor the
transcriptional repression observed and likely be required
for the establishment of latency. In addition to the loss of
VP16 function, low levels of Oct-1 [96] or differing ratios
of Oct protein family members [97] may also decrease the
likelihood of IE gene expression in neurons. Thus, it
appears that VP16 function could be compromised during
the establishment of latency (Figure 1A). Whether this
alone, or other mechanisms in addition to or instead of
impaired VP16 function, contribute to the absence of viral
IE gene expression observed when HSV-1 establishes
latency remains to be demonstrated experimentally.

Maintaining and Reactivating Latent HSV-1 Infections
Maintaining a latent infection requires that the viral
genome be perpetuated and the cell kept alive. As neu-
rons are non-dividing, genome replication and faithful
partitioning to daughter cells upon division do not
represent significant issues for HSV-1 latency. Perhaps
to avoid cell death by apoptotic or immune measures,
HSV-1 severely restricts viral gene expression during
latency. The only major transcript detected is called the
LAT for latency-associated transcript [98]. The LAT
promoter has binding sites for neuronal-specific tran-
scription factors [99,100] and, unlike viral lytic phase
promoters, is associated with histones exhibiting marks
of active euchromatin during latency [101]. Although
there are open reading frames encoded by LAT with the
potential to encode proteins, such proteins have never
been reproducibly detected [102]. Rather, LAT is
thought to be processed into microRNAs (miRNAs), at
least one of which has the potential to translationally
silence mRNAs that encode the viral IE gene ICP0
[103-108]. Like other viral IE proteins, ICP0 can activate
the expression of other viral genes and thus promote
the lytic replication cycle [109-112]. ICP0 is found in
virions but it is unclear if tegument-delivered ICP0 can
activate gene expression, whereas de novo expressed
ICP0 clearly does. Thus, preventing the synthesis of
viral IE proteins appears to be a critical part of main-
taining the latent HSV-1 genome.
The presence of LAT can also affect the chromatin

structure of viral IE promoters. In the absence of LAT,
the normally heterochromatic structure of the IE pro-
moters during latency takes on features more reminis-
cent of active, euchromatin [94]. It is currently
unknown if this is a direct effect of the LAT transcript
similar to the way non-coding RNAs can affect chro-
matic structure [113], or an indirect effect of the ability
of LAT to suppress the expression of ICP0, which itself
can promote euchromatin structures on viral genomes
[114-116]. LAT has also been proposed to have an anti-
apoptotic effect [117], but the mechanism through
which this might be achieved is unknown. Interestingly,
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Figure 1 Establishment of herpesvirus latency. A. Herpes Simplex Virus Type 1 (HSV-1). Infection of a sensory neuron allows for nuclear entry
of viral DNA but not the tegument transactivator VP16. Viral immediate early (IE) genes are silenced. B. Human Cytomegalovirus (HCMV).
Infection of a CD34+ hematopoietic progenitor cell allows for nuclear entry of viral DNA but not the tegument transactivator pp71. Viral IE
genes are silenced by Daxx and an unidentified (?) trans-dominant, HDAC-independent mechanism. C. Epstein-Barr Virus (EBV). Infection of a
memory B cell allows for nuclear entry of viral DNA. Tegument transactivators for EBV are uncharacterized. At least one IE gene (Z) and two early
genes (BALF1 and BHRF1) are expressed. Z promotes B cell proliferation and BALF1/BHRF1 inhibit apoptosis, both of which appear to be
required for the efficient establishment of latency. Z is unable to fully activate lytic phase gene expression because the viral genome is
unmethylated.

Penkert and Kalejta Herpesviridae 2011, 2:3
http://www.herpesviridae.org/content/2/1/3

Page 5 of 20



while LAT-null viruses have latency defects, they still
establish, maintain, and reactivate latency to a substan-
tial degree [47,118,119]. This may indicate the presence
of one or more non-LAT measures of latency mainte-
nance. Indeed, a miRNA not encoded by LAT that has
the potential to translationally silence the mRNA for the
viral IE protein ICP4 has also been detected in latently
infected cells [103]. Thus it would appear that a major
strategy to maintain HSV-1 latency is simply to curtail
inappropriate reactivation events by preventing the
translation of any spurious IE messages that might be
generated. However, direct repression of viral lytic gene
expression and/or inhibition of apoptosis may also
occur.
Other control measures in addition to LAT (Figure 2A)

also help maintain HSV-1 in a latent state. Recent experi-
ments with an in vitro model system of primary rat
superior cervical ganglia neurons indicate that a signaling
cascade starting with nerve growth factor and proceeding
through PI3K and Akt is essential to prevent lytic reacti-
vation events [34]. The molecular mechanism through
which this pathway suppresses reactivation has not been
described. However, the in vitro model system utilized
appears much more amenable to molecular studies than
existing animal models, so the prospects for a more
detailed dissection of how this pathway maintains the
viral genome in a latent state are appealing.
Reactivation mechanisms of latent HSV-1 infections

have been notoriously controversial. Even the stage of
infection at which the reactivation event initiates (IE
gene expression or viral DNA replication) has been
debated [120-124]. Because the latent genome is without
an accompanying tegument, it has always been assumed
that reactivation of a lytic infection from latency must
be fundamentally different from the de novo initiation of
the lytic replication program upon infection of a suscep-
tible cell type. Complex animal experiments with
complicated interpretations have been used to explore
HSV-1 reactivation. Most or all of these depend on the
ability of mutant viruses to reactivate from latency and
complete productive replication, often in explant cul-
tures from HSV-1 infected animals.
ICP0 is the protein most often described as an inducer

of reactivation. ICP0 mutant viruses clearly fail to reacti-
vate from animal models of HSV-1 latency [125,126].
However, they also have severe defects during de novo
lytic infections [127,128]. Thus it is unclear if the
latency phenotype of ICP0 mutants is due to defects in
the initiation of lytic phase gene expression from a
latent viral genome, or from the failure to complete the
lytic replication cycle after it has been efficiently started
(or both). Furthermore, differing readouts of reactivation
(explant vs. in vivo) give different results as to the
requirement for ICP0 during reactivation [125,126,129].

Recently, VP16 has been proposed to be an inducer of
reactivation [130], even though earlier work indicated
that a VP16 mutant with a non-functional acidic activa-
tion domain (in1814) can establish, maintain, and reacti-
vate from latency [131,132] despite being impaired in its
ability to initiate a de novo lytic infection [41]. Readers
are directed to numerous recent reviews with a more
detailed and complete examination of mechanisms con-
trolling HSV-1 latency maintenance and reactivation
[19,21-23].

Animating Latent HSV-1 Infections
Two significant obstacles hinder our understanding of
HSV-1 latency. The first is the underutilization of suita-
ble in vitro systems [34-38] relative to the heavy reliance
upon animal models, valuable as they are, for all levels
of latency experimentation. The recent resurrection of a
tractable cell culture model for HSV-1 latency [34]
should catalyze additional molecular studies. The second
is the marriage of the initial events that awaken latent
genomes with the completion of productive viral replica-
tion. This is necessitated by the term reactivation, which
requires productive replication as an endpoint, and
therefore mixes both inciting and propagating events
under the same moniker. Based on the concept that
initiating reactivation and completing reactivation repre-
sent two separate events [129,133], we propose the word
animation to describe the very first lytic phase event
that occurs from latent viral genomes. This theoretical
separation has practical application, as it allows one to
divorce the completion of productive lytic replication in
a previously latent cell from its initiation.
The verb animate means to give life or motion to,

thus we define herpesvirus animation as execution of
the event that ends latency and initiates the productive
replication cycle via reactivation. Unlike designations
such as initiation or reactivation that refer to productive
infections, animation does not require the eventual gen-
eration of infectious virus particles. Applied to latency,
animation as a term provides a clear and defined separa-
tion between the commencement and completion of a
reactivation event. This nomenclature provides concise
specific terminology to an important, circumscribed
event currently masked by its inclusion with the many
subsequent occurrences of reactivation. It allows us to
ask what is the animating event in HSV-1 reactivation,
and what controls it? Treatment of latently infected
mice with acyclovir (an inhibitor of viral DNA replica-
tion) concomitant with a reactivation stimulus (heat
stress) inhibited late gene expression and reactivation,
but did not prevent IE protein production [134]. Thus
while viral DNA replication is required for reactivation,
it is apparently not required for animation. In similar
experiments it was demonstrated that ICP0 mutant
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Figure 2 Maintenance of herpesvirus latency. A. HSV-1. Viral latency associated transcripts (LAT) encode micro RNAs (miRNA) that suppress
the expression of viral IE proteins. Nerve growth factor (NGF) induced signaling also helps maintain latency in vitro. Non-dividing neurons do
not require a mechanism to replicate or faithfully partition viral genomes. B. HCMV. The contributions of viral mRNAs/transcripts detected during
latency (CTLs, LUNA, UL138, US28, vIL10) to the establishment, maintenance, animation, or reactivation from latency have not been fully
characterized. Whether or not latently infected progenitor cells divide or self-renew (arrow with question mark) is not known, thus the need for
(or presence of) replication or partition functions is also unclear. C. EBV. The viral EBNA1 protein provides replication and partition functions
required to maintain latency in dividing B cells. Different types of EBV latency also express other latent genes whose functions appear to be
proliferation induction, apoptosis inhibition and immune evasion. EBER and BART transcripts are also expressed during latency. EBERs inhibit
protein kinase R (PKR) to maintain translational proficiency, and BARTs are processed into miRNAs. Viral genome methylation prohibits lytic phase
gene expression.
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viruses could produce IE proteins after heat stress, but
did not productively replicate [129]. Thus, while ICP0 is
clearly required for reactivation, it apparently is not
required for animation.
If the two main protagonists in the reactivation debate

(ICP0 and DNA replication) are not responsible for gen-
ome animation, than what is? Could VP16, which acti-
vates the genome upon de novo lytic infection, also be
responsible for animating latent HSV-1 genomes? A
caveat to this hypothesis is that a specific VP16 mutant
virus (in1814) with a 12 bp insertion in the acidic activa-
tion domain can efficiently reactivate from latency in
explant assays [131,132]. However, this same mutant fails
to reactivate in heat stressed mice [130]. As the in vivo
assay would presumably be more physiologically relevant,
it appears that VP16 is required for reactivation, and thus
may be required for animation. In a direct test of this
model it was observed that viral IE proteins were
expressed after heat stress in animals latently infected
with an ICP0 mutant virus [129], but not with VP16
mutant viruses [130]. In addition, two different reporter
viruses detected VP16 promoter activity after the reacti-
vation stimulus, but prior to IE protein production [130].
While VP16 is expressed as a late gene during de novo
lytic infection, it apparently is expressed prior to the clas-
sically defined viral IE genes in heat stressed mice. Thus,
the de novo expression of the VP16 protein appears to be
the animating event that initiates the reactivation of a
productive infection from latency (Figure 3A). It is
unclear what changes the stressed cell may undergo that
facilitate VP16 expression during latency animation.
However, at least some of those changes appear to speci-
fically modulate the activity of the VP16 promoter, as the
late promoter that drives expression of the gene encoding
the major capsid protein (UL19; VP5) could substitute
for the VP16 promoter during lytic infection in vitro and
during acute ocular infections of mice, but was severely
impaired for replication in mouse trigeminal ganglia
[130]. Interestingly, this implies that a significant amount
of viral replication in the ganglia occurs not by de novo
lytic infection but by reactivation of (short duration)
latent infections, even during the acute phase. In addi-
tion, it is likely that cellular stresses also lead to HCF
subcellular relocalization to allow the newly expressed
VP16 to enter the nucleus and activate viral IE gene
expression. Therefore, animation of the HSV-1 genome
may be nearly identical for de novo lytic infections and
for latency reactivations, with the only difference being
the source of VP16 (tegument delivered or newly
synthesized).

Establishing Latent HCMV Infections
Numerous viral genes have been reported to be exp-
ressed upon in vitro infection of CD34+ hematopoietic

progenitor cells with HCMV [135-139]. This heteroge-
neous population of cells represents the most widely
accepted and utilized model for experimental HCMV
latency. It is clear that the viral IE genes are not among
the latently expressed transcripts. Thus it appears that
silencing viral IE gene expression occurs as HCMV
establishes latency. To appreciate how this occurs, we
must understand how IE genes are activated during lytic
infection.
Expression of the main viral IE proteins, IE1 and IE2,

is controlled by the Major Immediate Early Promoter,
or MIEP. Often referred to as “the CMV promoter”, the
MIEP is constitutively active when found in heterolo-
gous constructs such as plasmids, but is surprisingly
dependent on viral tegument transactivators for activa-
tion in the context of the viral genome [2,140-143]. The
major tegument transactivator is pp71 [144]. Upon
infection of a cell type permissive for lytic replication,
pp71 travels to the nucleus and activates the MIEP by
inactivating a cellular intrinsic immune defense that
would otherwise silence HCMV gene expression [145].
This defense is mediated by cellular transcriptional co-
repressors that localize to promyelocytic leukemia
nuclear bodies (PML-NBs) [146-153]. Recombinant
viruses with pp71-null or Daxx-binding mutations have
severe growth defects and fail to effectively initiate IE
gene expression [2,154]. The hallmark event of this cell
defense neutralization is the degradation of Daxx [145].
The mechanism through which pp71 induces Daxx
degradation is not understood, although proteasome
activity and the ability of pp71 to interact with Daxx is
required. Interestingly, all evidence points to an ubiqui-
tin-independent route to the proteasome [155,156].
The Daxx-mediated defense silences viral IE gene

expression by fostering a transcriptionally repressive
chromatin structure on the HCMV genome [157]. Vir-
ion-packaged DNA lacks histones [158] but is rapidly
chromatinized upon entry into the nucleus [159,160].
Prior to, or in the absence of pp71 function, the his-
tones that become associated with the HCMV genome
bear transcriptionally repressive post-translational modi-
fications, such as the absence of acetylation and the pre-
sence of H3K9 dimethylation [161-164]. Association
with the repressive HP-1 protein is also observed.
Knockdown of Daxx by siRNA reduces heterochromatic
markings associated with the HCMV genome [157].
When pp71 is present and active, or when Daxx levels
are decreased by RNA interference approaches, histones
associated with the viral genome are acetylated, a mark
of transcriptionally active euchromatin [161-166]. As
Daxx associates with histone deacetylases (HDACs), the
widely accepted model is that the pp71-mediated de-
gradation of Daxx prevents HDAC association with
the HCMV genome and thus facilitates euchromatin
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Animation / Reactivation

HSV genome

VP16 mRNA

VP16
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A.
HSV

B.
HCMV

C.
EBV

CD34 + HSC                          Dendritic cell

B cell                                    Plasma cell

EBV genome

BCR

antigen

HCMV genome

AAA
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Figure 3 Animation and reactivation of herpesvirus latency. A. HSV-1. Stress signals (lightning bolt) induce the de novo expression of VP16
and its recruitment into the nucleus (likely via HCF) to activate viral IE gene expression. A productive reactivation event follows. B. HCMV.
Signals (lightning bolt) induce CD34+ cell differentiation into a dendritic cell, inducing animation and subsequent reactivation through unknown
molecular mechanisms. C. EBV. Activation by antigen stimulation of the B cell receptor (BCR) induces B cell differentiation into a plasma cell,
inducing animation and subsequent reactivation through unknown molecular mechanisms.
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formation and transcriptional activity. pp71 also dis-
places ATRX from Daxx [167], thus further activating
IE gene expression. ATRX has homology to the SWI/
SNF family of chromatin remodeling proteins [168,169],
but it is currently unclear if this protein alters the occu-
pancy or placement of histones at the MIEP.
As mentioned above, IE genes are not expressed at the

start of HCMV latency. Presumably, this must occur
through a loss of pp71-mediated de-repression, a domi-
nant block to IE gene expression, or a combination of
both mechanisms. In the CD34+ cell populations, it
appears both mechanisms are used (Figure 1B). pp71 is
prevented from degrading Daxx and de-repressing viral
gene expression because it fails to localize to the
nucleus in infected CD34+ cells [153]. Knockdown of
Daxx in these cells, or treatment with the HDAC inhibi-
tor valproic acid rescues IE gene expression upon infec-
tion with the AD169 laboratory-adapted strain of
HCMV [153]. Thus, the Daxx-mediated intrinsic defense
contributes to the silencing of the MIEP that occurs
when latency is established. Essentially identical results
[152] were obtained in two other cell culture models for
quiescent HCMV infections that appear to faithfully
mimic most aspects of latency. Differentiation fails to
induce reactivation from these quiescently infected cells,
though more recent reports suggest treatment with
vasoactive intestinal peptide (VIP), an immunomodula-
tory neuropeptide [170], or phorbol 12-myristate 13-
acetate [171], can induce low levels of reactivation.
As the same intrinsic defense that represses IE1

expression during lytic infection prior to pp71 function
also silences expression during latency [145,153], it is
not surprising that indistinguishable chromatin is
assembled on this transcriptionally inert viral locus
under these two different conditions. Latent genomes
either from in vitro infected CD34+ cells or from nat-
ural latent infections in vivo display unacetylated and
H3K9 dimethylated histones and are associated with the
HP-1 transcriptional repressor [162,163], similar to what
is found during lytic infection in the absence of pp71.
Thus, analogous to HSV-1, sequestration of the virion

tegument transactivator protein in the cytoplasm appears
to be at least one way that viral genes are silenced at the
start of latency. While it is likely that the cytoplasmic loca-
lization of HCF prevents VP16 nuclear localization in
HSV-1 infected neurons, it is unclear what restricts pp71
nuclear entry during HCMV infection of CD34+ cells.
Interestingly, de novo expressed pp71 in CD34+ cells loca-
lizes to the nucleus [153], so it does not appear that pp71
trafficking is controlled in the same manner as VP16. pp71
cytoplasmic localization is more likely due to a defect in
tegument disassembly than to a specific effect on pp71 traf-
ficking because at least one other tegument protein, pp65,
is also sequestered in the cytoplasm in undifferentiated

NT2 cells quiescently infected with HCMV [172]. pp65
localization upon latent infection of CD34+ cells has not
been analyzed. A mechanism for this hypothesized defect
in tegument disassembly has not been offered, although it
appears that this is not a dominant block imposed by
undifferentiated cells, but a recessive trait. Heterologous
fusions of undifferentiated and differentiated cells permit
tegument-delivered pp71 nuclear localization, leading to
the conclusion that differentiated cells possess a domi-
nantly acting factor that drives tegument-delivered pp71
nuclear localization [172]. This fits well with the observed
sub-cellular localization of pp71 and IE gene expression
competency for matched pairs of undifferentiated and dif-
ferentiated cells [152].
Interestingly, pp71 cytoplasmic sequestration is not the

only mechanism to restrict IE gene expression during
establishment of HCMV latency in CD34+ cells. While
IE gene expression from the AD169 genome could be
rescued by HDAC inhibition, this was not the case during
infection with the FIX or TB40/E clinical strains of
HCMV [153]. Clinical strains of HCMV have undergone
significantly fewer passages in vitro and retain a large sec-
tion of the viral genome (called the ULb’ region) that is
absent in laboratory-adapted strains such as AD169
[173-175]. In mixed infections between AD169 and a
clinical strain, the clinical-strain imposed restriction of
viral IE gene expression in the presence of HDAC inhibi-
tion was dominant [153]. Whether this clinical strain
encoded, trans-dominant HDAC independent restriction
of IE gene expression occurs in a cell autonomous or
non-cell autonomous manner, and the viral gene respon-
sible for this restriction, is unknown. Also, whether or
not this clinical strain function is newly expressed upon
viral infection or is a component of the infecting virion
has not been determined. The fact that viral DNA
damaged by ultraviolet (UV) light, which is unable to
support transcription, fails to be maintained in latently
infected cultures over time has been used to conclude
that viral gene expression is required for the establish-
ment of HCMV latency [136]. While this may be true,
viral DNA clearance under these experimental conditions
may (also or instead) be the result of the UV-induced
damage itself, and not the lack of gene expression. Thus
it is currently unclear if the establishment of HCMV
latency requires viral latent gene expression or simply the
silencing of viral lytic gene expression. Either way,
HCMV uses at least two mechanisms to silence viral IE
gene expression during the establishment of latency,
pp71 cytoplasmic sequestration and an unidentified
HDAC-independent block [153].

Maintaining and Reactivating HCMV Latent Infections
How HCMV maintains latency is poorly understood
(Figure 2B). Unlike other betaherpesviruses that have
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shown the ability to insert their genomes into cellular
chromosomes [176-178], the available evidence indicates
that latent HCMV genomes are episomal, circular mole-
cules [179]. It is also unclear whether HCMV genomes
are replicated during latency. The half-life and dividing
potential, in vivo, of latently infected CD34+ cells is not
known. If latently infected cells fail to divide but have
long half-lives, this would mimic the situation with
HSV-1 latent infection of neurons. If cells latently
infected with HCMV do divide, it would more resemble
the situation with EBV, and would require replication
and likely partitioning functions for the viral genome
during latency. Alternatively, the latent reservoir may be
a short-lived non-dividing cell, which would require that
HCMV continually re-seed the latent reservoir to
achieve life-long persistence. Clearly, these are impor-
tant questions that to date have not been sufficiently
addressed.
While over 80 genes are reported to be expressed in

in vitro latently infected cells [136,139], only a few are
reportedly expressed during natural latent infections
in vivo. These are the CLTs, US28, vIL10, LUNA, and
UL138 loci. Contributions that these loci may (or may
not) make to HCMV latency has been recently reviewed
[26], so they will only be briefly mentioned here. The
CTLs (CMV latency transcripts) represent sense and
antisense RNAs from the MIE locus [180,181]. While
there is potential for CTLs to act in an antisense or
interfering way with viral IE gene expression, no such
activity has been demonstrated. Antibodies to proteins
hypothetically encoded by the CTLs have been detected
in HCMV seropositive patients [182], implying that they
might be translated. However, deleting the prominent
open reading frame of these transcripts (UL94) did not
impair in vitro latency [183]. US28 is a chemokine
receptor [184,185] whose role during latency has not
been studied. vIL10 is a cytokine that may protect
latently infected cells against host immune surveillance
[137,186,187]. A transcript antisense to the UL81-82
region of the genome encodes an open reading frame
termed LUNA for latency unidentified nuclear antigen
[138,188]. While LUNA may indeed be a functional pro-
tein, this transcript has the potential to modulate
de novo pp71 expression in an antisense or interfering
manner (pp71 is the product of the UL82 gene). Ana-
lyses examining the requirement or role for LUNA dur-
ing latency have not been reported. UL138 encodes a
protein that localizes to the Golgi apparatus during lytic
infection and is required for the maintenance of latency
in some [189], but not other, in vitro model systems
[187]. A mechanism for how UL138 may regulate
latency has not been proposed. A specific HCMV-
encoded microRNA, miR-UL112-1, has been proposed
as a potential way that viral IE gene expression may be

downregulated during latency [190,191], although the
expression of this or any other HCMV microRNA dur-
ing latency has not been reported.
Reactivation of latent HCMV genomes is known to

depend upon cell differentiation [162,192-195], although
the detailed molecular mechanisms behind this event
are not understood. What is known is that latent viral
genomes lose their heterochromatic marks and obtain
marks of active euchromatin upon the differentiation of
CD34+ cells into dendritic cells [162,163]. This seems to
indicate that the cellular intrinsic defense that helps
establish latency is inactivated during the process of
reactivation.

Animating Latent HCMV Infections
A significant obstacle to our understanding of HCMV
latency is the technical difficulties inherent in using
CD34+ cells as an in vitro model. These cells are het-
erologous in nature, are difficult or impossible to main-
tain in an undifferentiated state for even short periods
of time, and infect inefficiently, even with clinical strain
viruses. Models for how HCMV may animate from
latency have included the de novo expression of cellular
transcription factors specific for the MIEP upon differ-
entiation, or the de novo expression of pp71. Both mod-
els have their deficiencies. The transactivator model
cannot explain how the Daxx-mediated intrinsic defense
would be overcome. In this sense it is analogous to a
pp71-null virus infection of a differentiated fibroblast,
where MIEP activating transcription factors are present
but viral IE gene expression is still poor [2]. The
de novo expression of pp71 prior to IE gene expression
upon the differentiation of latently infected CD34+ cells
was examined but not detected [188], indicating either
that it does not occur, or was below the limit of detec-
tion of the assay used. How differentiation triggers
HCMV genome animation is still unclear (Figure 3B).

Establishing Latent EBV Infections
Studies of EBV replication are significantly different
from those of HSV-1 and HCMV. Latent EBV infection
of B cells transforms them [196] and this represents a
cancer burden in the human population [17,30]. Thus,
most work on EBV concentrates on the mechanisms
through which EBV transforms cells. Consequently,
molecular mechanisms that control the initiation of a
lytic infection upon primary infection of a cell permis-
sive for productive infection, or the establishment of
latency upon the primary infection of a B cell, are
poorly understood. For HSV-1 and HCMV, it is clear
that infection of cell types fully permissive for produc-
tive infection substantially amplifies the amount of virus
present. This amplification by de novo lytic infection
may be important for the establishment of latency
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because of the accessibility of cell types that support
latency. Though a similar process most likely occurs
during EBV infection [197], it is currently unclear if
such an initial amplification by lytic infection in fully
permissive cell types such as epithelial cells is required
for the efficient establishment of EBV latency [198]. It is
possible that the initial infectious event is a latent infec-
tion of a circulating B cell, and that reactivation of that
infection could be the source of amplified virus. Thus, it
is unclear how much insight into the pathology of the
virus is provided by the study of initial events occurring
during primary infection of epithelial cells. Such experi-
ments are challenging to perform because infectious
stocks of EBV virions are difficult to make and transfer
of virus to epithelial cells, either by free virions or by B
cell associated virions is inefficient [199-201]. Further-
more, the differentiation state of the epithelial cell
appears to impact the outcome of an acute infection
[201]. Recent work has determined that an abortive
infection of primary epithelial cells resulted in gene
expression patterns that were different from infection of
epithelial cell lines and primary B cells [200]. However,
the gene expression pattern of a de novo initiated, pro-
ductive lytic infection has not been determined, and
thus the molecular mechanisms that would account for
this gene expression pattern are unknown. Critically, it
is not known which or even if tegument proteins acti-
vate viral gene expression under these circumstances.
Significantly more is known about the establishment

of latency upon primary infection of a B cell (Figure
1C), although the molecular details have generally not
been deciphered. Viral IE gene expression is not
silenced upon infection of cells destined for latency. At
least three lytic phase genes are expressed upon latent
infection of primary B cells and are apparently required
in order to efficiently establish latency. These are the
Bcl-2 homologs BALF1 and BHRF1 [202] and the AP-1
homolog BZLF1 [203,204]. BHRF1 is also expressed dur-
ing some types of latency [205]. Other reports of more
substantial lytic gene expression during the establish-
ment of latency likely represent productive replication
in a subset of fully permissive cells found in the periph-
eral blood mononuclear cells (PBMCs) used for those
experiments [206]. Cellular AP-1 is a DNA binding
transcription factor, and so is the Z protein (also called
Zta, ZEBRA and EB1) encoded by BZLF1 [207]. Z
expression reportedly drives the proliferation of quies-
cent naïve and memory B cells upon infection, and this
significantly increases the efficiency with which EBV
establishes latency [203]. However, Z-null viruses can
still establish latent infections in vitro [39,208], so this
step appears not to be absolutely required. The
unscheduled proliferation induced by Z may be pro-
apoptotic, and this may necessitate the expression of

BALF1 and BHRF1 proteins. Like their cellular counter-
part Bcl-2 [209], these proteins have anti-apoptotic
effects [210,211]. Deletion of both BALF1 and BHRF1
inhibited the ability of EBV to latently infect and induce
the transformation of primary B cells [203]. The BHRF1
locus also encodes four miRNAs that may enhance the
establishment of latency by promoting cellular prolifera-
tion and survival [212,213].
The role of Z during the establishment of latency is

clearly different from its role during reactivation, when
it drives viral early and late gene expression and acti-
vates the lytic origin of DNA replication, leading to
infectious virion production [29,214]. Early and late lytic
phase genes are not expressed during the establishment
of latency even though Z is [203,204]. The differential
effects of Z on viral gene expression during the estab-
lishment and reactivation phases of latency can be
explained by the methylation status of the viral genome
[215-217]. In the virion, and thus initially upon de novo
infection, the viral genome is unmethylated. After
latency is established, the EBV genome becomes exten-
sively methylated [203]. Though DNA methylation is
typically a cellular mark of transcriptional inactivity,
EBV has evolved a clever way to overcome methylation-
mediated silencing by the cell. The Z protein is able to
bind to methylated DNA more strongly than unmethy-
lated DNA [216,217], and Z activates transcription from
methylated promoters significantly more than from
unmethylated promoters [203,215]. Thus, while Z is
expressed during the establishment of latency, the viral
genome is unmethylated and so Z cannot activate the
expression of early and late viral genes, and therefore
under these circumstances, does not induce the lytic
phase. Interestingly, another EBV IE gene product, the R
protein encoded by the BRLF1 gene, is a transcription
factor that preferentially activates unmethylated promo-
ters [216]. There is speculation that R may be more
important than Z in initiating de novo lytic infection
(Shannon Kenney, personal communication). Thus EBV
may encode two unique IE proteins with independent
activities, one to promote de novo lytic infection (R),
and one (Z) to promote the establishment and reactiva-
tion (see below) of latency.
It is unclear if the expression of Z, BALF1 and BHRF1

at the start of latency requires a tegument protein in a
similar manner to the lytic phase IE genes of HSV-1
and HCMV. Transfected HSV-1 or HCMV DNA is cap-
able of initiating a lytic infection, but co-transfection
with an expression plasmid for VP16 or pp71 (respec-
tively) increases the efficiency of this process by at least
10-fold, mimicking the effects of the tegument-delivered
protein upon de novo infection [218,219]. Interestingly,
a virus deficient in the EBV tegument protein BNRF1
can enter cells but fails to efficiently establish latency
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[220]. BNRF1 has recently been shown to bind to Daxx,
disrupt its association with ATRX, and stimulate viral
gene expression from a co-transfected EBV bacterial
artificial chromosome (BAC) construct (Paul Lieberman,
personal communication). Thus, EBV tegument proteins
may promote the expression of genes required for the
establishment of viral latency in a homologous fashion
to the manner in which HCMV pp71 promotes the
expression of viral genes that initiate lytic infection.

Maintaining and Reactivating Latent EBV Infections
Latently infected B cells can be generated in vitro or iso-
lated from infected patients. EBV transforms and
immortalizes latently infected B cells, creating lympho-
blastoid cell lines, or LCLs [17,30,196]. These cells
divide, and thus EBV must ensure both the replication
and the faithful partitioning of its genome during the
maintenance of the latent state [221-225]. An enormous
amount of literature exists concerning how EBV trans-
forms B cells and maintains latency. As this has been
extensively reviewed in several recent manuscripts
[29-31,196,226-228], we only briefly describe the general
mechanistic concepts here.
In latently infected B cells (Figure 2C) up to nine

virally encoded proteins are expressed, these include the
EBV nuclear antigens (EBNA-1, -2, -3A, -3B, -3C and
-LP) and the latent membrane proteins (LMP-1, -2A
and -2B). Different types of latency (e.g. type I, type II,
or type III) display different sets of virally expressed
genes [32,227,229,230]. EBNA-1 is expressed in all types
of latency and plays a central role in maintenance of the
viral genome as it is responsible for initiation of episo-
mal DNA replication and segregation during cell divi-
sion [221,229,231,232]. The other viral proteins
contribute to the transformation and immortalization of
the infected B cells [226,229,230]. In addition to these
viral proteins, non-coding viral RNAs are detected in all
latently infected cells, including the EBERs (EBV-
encoded RNAs) and the BARTs (BamHI-A rightward
transcripts). EBERs inhibit PKR-mediated apoptosis and
induce expression of the cellular chemokines IL-6 and
IL-10, which promote B cell growth [213,233,234].
BART transcripts are processed into microRNAs
(miRNA) that modulate LMP-1 expression [235] and
the ability of infected B cells to avoid immune detection
and clearance [236].
Latent viral gene expression is regulated by differential

promoter utilization and is controlled by epigenetic
marks to both DNA-bound histones as well as the DNA
itself [33,237]. In general, loci that are active during
latency display unmethylated DNA and acetylated his-
tones, whereas repressed loci display methylated DNA
and H3K9 trimethylated histones [238-240]. The mole-
cular mechanisms that lead to these epigenetic marks

have not been described. The binding of the chromatin
insulator CTCF protein has also recently been shown to
modulate viral gene expression during latency [241,242].
As mentioned earlier, lytic viral gene expression during
latency is suppressed by genome methylation. In addi-
tion, expression of the Z protein is specifically inhibited
by the cellular transcription factor Zeb1 [243,244].
Reactivation of natural EBV infections (Figure 3C)

occurs when infected memory B cells differentiate into
plasma cells in response to antigen stimulation
[29,214,229]. This can be mimicked in vitro by cross-
linking of the B cell receptor by treatment with an anti-
immunoglobulin antibody [245,246]. The activation of
cellular transcription factors BLIMP1 and XBP-1 upon
differentiation likely plays a role in facilitating viral lytic
phase gene expression [247-249]. Reactivation is also
commonly initiated in vitro by the transfection of an
expression plasmid for the Z protein or by treating cells
with a combination of the phorbol ester TPA and the
HDAC inhibitor sodium butyrate [245,250,251]. Z pro-
tein function is absolutely required for reactivation, as a
mutant Z protein, Z(S186A), fails to induce reactivation
[252,253]. Unlike during the establishment of EBV
latency, the viral genome at the time of a reactivation
event is methylated, and thus the newly expressed Z is
able to efficiently activate the expression of the viral
early and late genes and thereby promote the produc-
tive, lytic replication program.

Animating Latent EBV Infections
Z expression is necessary and sufficient for the reactiva-
tion of latent EBV infections [214,254,255]. Artificial
downregulation of the cellular Zeb proteins that silence
Z during latency induces Z expression and reactivation
[243,244]. Furthermore, microarray data mining indi-
cates that Zeb mRNA levels decrease quickly and preci-
pitously after antigen-mediated differentiation of B cells
into plasma cells (Janet Mertz, personal communica-
tion). Thus, it is distinctly possible that induction of Z
expression is the animating event during EBV reactiva-
tion, and that this may in part occur by the disappear-
ance of cellular repressor proteins that silence Z
expression during latency. However, recent evidence
indicates that de novo gene expression is required in
order to induce Z expression upon B cell differentiation
[256]. Production of Z transcripts following cross-link-
ing of the B cell receptor was prevented by protein
synthesis inhibitors, leading authors of that study specu-
lated that a newly synthesized cellular protein was
responsible for turning on Z expression. However, in
analogy to HSV-1 (and perhaps HCMV) animation, it is
distinctly possible that the de novo expression of a tegu-
ment protein, perhaps BNRF1, is the actual event pre-
vented by the protein synthesis inhibitors that impair
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EBV reactivation. It would be interesting to see if the
BNRF1-null virus fails to reactivate from latently
infected B cells upon receptor crosslinking, and if the
Zeb proteins also modulate BNRF1 expression. If this
were true, animation would likely be the only step dur-
ing reactivation that requires BNRF1, because the null
virus was proficient for reactivation from 293 cells upon
ectopic Z expression [220].

Conclusions
Establishment of latency (Figure 1) for HSV-1 and
HCMV appears to be quite similar. Viral IE genes are
not expressed because the tegument transactivators
required for that event are restricted from entering the
nucleus. Other viral gene expression may not be
required for the establishment of latency. The major dif-
ference is that the silencing of IE gene expression for
HSV-1 appears to result from a lack of promoter activa-
tion, whereas for HCMV it results from both active pro-
moter repression by cellular factors such as Daxx and
HDACs as well as by an unidentified trans-dominant,
HDAC-independent mechanism [153]. The establish-
ment of EBV latency is significantly different. It requires
viral gene expression, including lytic phase genes of the
IE and early classes, to promote cellular proliferation
and prevent apoptosis [202-204]. It is presently unclear
if or how viral tegument proteins activate this gene
expression.
Maintenance of latency (Figure 2) is significantly differ-

ent for each virus, although assembling a repressive chro-
matin architecture on the promoters of lytic phase genes
appears to be a common control mechanism
[20-22,27,33,257]. HSV-1 remains latent in a non-dividing
cell and thus does not need to replicate or faithfully parti-
tion its genome. Significant control measures during
latency appear to be miRNA mediated silencing of any
spurious IE gene expression that may occur [103,108], and
NGF-mediated Akt phosphorylation that inhibits reactiva-
tion by an unknown mechanism [34]. Inhibition of apop-
tosis may also be important, as is the quelling of
reactivation events in a non-cytolytic manner by interferon
gamma and granzyme B mediated degradation of ICP4
[258]. HCMV appears to express at least some proteins
during the maintenance of latency. Thus, not surprisingly,
at least one (vIL10) appears to limit immune detection
and clearance of latently infected cells [186,187]. Roles for
other viral proteins expressed during latency are not
known. Likewise, it is unclear if latently infected cells
divide, and thus it is also unknown if mechanisms for gen-
ome replication or partitioning exist or are required.
miRNA mediated silencing of IE gene expression during
latency has been proposed but not demonstrated. EBV
expresses multiple genes during latency, many of which
ensure cell survival and proliferation. In addition, EBNA1

promotes replication of the viral genome and equal parti-
tioning to daughter cells during cell division. Most lytic
phase genes are kept silent by DNA methylation at ele-
ments within their promoter regions.
Animation of latency (Figure 3) has been most exten-

sively characterized for HSV-1, where de novo expression
of the tegument transactivator VP16 appears to be the
initiating step of the reactivation process [130]. EBV also
requires de novo protein expression prior to synthesis of
its IE gene encoding the Z protein during latency anima-
tion [256], but whether the required protein(s) is viral or
cellular (or both) is not known. Thus, whether or not
EBV and/or HCMV genomes are animated by de novo
expression of tegument transactivator remains to be
determined. Interestingly, recent experiments indicate
that the HCMV tegument transactivator pp71 is a target
of granzyme M mediated cleavage [259]. Thus it is possi-
ble that if de novo expression of pp71 is an animating
event for HCMV, granzyme mediated protein cleavage
may help extinguish HCMV reactivation events as it
appears to do for HSV-1. Reactivation for all herpes-
viruses likely begins at or prior to IE gene expression, but
then continues with a similar kinetic cascade of gene
expression that is observed during de novo lytic infec-
tions. Interestingly, HSV-1, HCMV, and EBV each
encode IE proteins (ICP0, IE1, and Z, respectively) that
disrupt PML-NBs, nuclear structures that suppress the
lytic replication of DNA tumor viruses [260-263], indicat-
ing that proteins that localize to these structures may also
play significant roles during the establishment and/or
maintenance of latency [147]. Thus, the molecular
mechanisms of animation and reactivation for the indivi-
dual herpesviruses, although initiated by different stimuli,
may be more conserved than currently appreciated.
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